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Exercise 1: Rescorla-Wagner (or delta) rule

1. Pavlovian conditioning. In Pavlov’s animal’s experiment, we denote r̄ the reward expected by the
animal, r the reward actually received, x the stimulus (e.g. the bell), w its weight, and η the learning
rate.

(a) What are the values of r̄ and w at the beginning of the experiment for an untrained animal ?

Correction. r̄ = 0 and w = 0 (the animal expects nothing).

(b) At each trial, the animal is presented a stimulus (x = 1) and a reward (r = 1). Assume η = 0.3.
What are the values of w and r̄ after the first, second, third, and fourth trials ? Plot w as a
function of the trial number.

Hint: use the following steps:

• Start from the current values of w and r̄, from the previous trial;

• Apply the learning rule ∆w = η(r − r̄)x;

• Update1 the value of the weight: w ←− w + ∆w.

• Compute the expected reward r̄ = wx; you now have the values of w and r̄ for the current
trial;

• Repeat for the next trial.

Correction. At the first trial we have

∆w = η(r − r̄)x = 0.3(1− 0)× 1 = 0.3

w = 0 + 0.3 = 0.3

r̄ = wx = 0.3× 1 = 0.3

So after the first trial r̄ = w = 0.3

Similarly, at the second trial:

∆w = η(r − r̄)x = 0.3(1− 0.3)× 1 = 0.21

w = 0.3 + 0.21 = 0.51

r̄ = wx = 0.51× 1 = 0.51

So after the second trial: r̄ = w = 0.51

Third trial: r̄ = w = 0.657

Fourth trial: r̄ = w = 0.7599

(c) Repeat for η = 0.8. What happens after a sufficiently large number of trials ?

Correction. First trial: r̄ = w = 0.8

Second trial: r̄ = w = 0.96

Third trial: r̄ = w = 0.992

Fourth trial: r̄ = w = 0.9984

After a sufficiently large number of trials, w converges towards 1. In this case, the expected
reward r̄ = wx corresponds to the actual reward (which is the aim of the RW learning rule). As
the difference between the actual and the predicted rewards is 0, w stops increasing.

(d) Which of the following curves correspond to η = 0.2 ? η = 0.5 ? η = 2 ?

1∆ is the classical symbol to indicate the evolution of a quantity. Intuitively, ∆w = ”new value of w” - ”old value of w”.
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Correction. η = 0.2→ third picture.

η = 0.5→ first picture (learning is faster as the learning rate increases).

η = 2→ second picture (upon a certain threshold, the learning scheme becomes unstable).

2. Partial blocking. Besides Pavlovian conditioning, the RW rule can also be applied to other paradigms
(partial conditioning, blocking, overshadowing...) We now assume that, at each trial, the animal is
indeed presented a stimulus (x = 1), but that the reward is randomly and uniformly distributed
between 0 and 1 (r ∼ U([0, 1])).

(a) What is the average value of the reward 〈r〉 ?

Correction. 〈r〉 = 0.5

(b) If the animal expects a reward r̄ = 〈r〉, what is the average value 〈δ〉 of the reward prediction
error ?

Correction. 〈δ〉 = 〈r − r̄〉 = 〈r〉 − r̄ = 0

Acquisition and extinction curves for Pavlovian conditioning and partial reinforcement as predicted by the
Rescorla-Wagner model. The filled circles show the time evolution of the weight w over 200 trials. In the
first 100 trials, a reward of r = 1 was paired with the stimulus, while in trials 100-200 no reward was paired
(r = 0). Open squares show the evolution of the weights when a reward of r = 1 was paired with the stimulus
randomly on 50% of the trials. From Dayan and Abbott 2001, p.334

3. Overshadowing. In this paradigm, the animal is presented 2 different stimuli: e.g. a bell (x1) and
a light (x2). Each of them is associated with respective weights w1 and w2. The expected reward is
then computed as the scalar product of the vectors w = (w1, w2) and x = (x1, x2):
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r̄ = w · x = w1x1 + w2x2

Similarly, weights are updated as

w→ w + η(r − r̄)x

(the same learning rate η is used for both stimuli).

(a) At each trial, the animal is presented both stimuli (x1 = 1 and x2 = 1) and a reward (r = 1).
Assume η = 0.4. What are the values of w1 and w2 after the first, second, third, and fourth trials
?

Correction. First trial: w1 = w2 = 0.4

Second trial: w1 = w2 = 0.48

Third trial: w1 = w2 = 0.496

Fourth trial: w1 = w2 = 0.4992

(b) What is the value of w1 + w2 after application of the Rescorla-Wagner (or delta) rule ? How do
you interpret this result ?

Correction. w1 + w2 = 1. The combination of the 2 stimuli x1 and x2 is interpreted as a single
conditioned stimulus of total weight w = 1.

(c) After learning, what will be the expected reward if only the first stimulus is presented (x1 = 1
and x2 = 0)?

Correction. r̄ = 0.5 (only half of the reward is expected as only half of the conditioned stimulus
is presented).

(d) Assume the animal has learned the weights w1 = 0.8 and w2 = 0.2. What will be the expected
reward if only the first stimulus is presented (x1 = 1 and x2 = 0)? Justify that in this case,
contrary to the previous question, x1 overshadows x2.

Correction. r̄ = 0.8. In this case, the sum of the weights is still equal to 1, but w1 > w2 means
that x1 is more salient (and thus overshadows) x2.

Exercise 2: Spike-Timing Dependent Plasticity (STDP)

1. Introduction. Herebelow are presented 3 sets of synaptic pair-wised trainings. Pre-synaptic spikes
are presented above in red, post-synaptic spikes are presented below in blue. On average, for which of
these training sets is the synaptic weight w going to increase ? Decrease ? Remain unchanged ?
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Correction. First plot: w is going to increase (on average, pre-synaptic spikes take place shortly before
post-synaptic spikes).

Second plot: w stays unchanged as the ∆t between pre and post-synaptic spikes is too high.

Third plot: w is going to decrease (on average, pre-synaptic spikes take place shortly after post-synaptic
spikes).

2. Forced training. In the pair-based STDP model with all-to-all interactions, the variation of synaptic
weight ∆w depends on the relative timing of the post-synaptic spikes (tposti )i and pre-synaptic spikes
(tprej )j . For n post-synaptic and m pre-synaptic spikes, ∆w can be computed as

∆w =

n∑
i=1

m∑
j=1

W (tposti − tprej )

where W (x) is a STDP function, for which a popular choice is{
x > 0 =⇒ W (x) = A+ exp(−x/τ+)

x < 0 =⇒ W (x) = −A− exp(x/τ−)

Physical meaning of the parameters A+,A−,τ+, and τ−

(a) Assume A+ = A− = 1 and τ+ = τ− = 10ms. The pre-synaptic neuron is activated 2 times, at
tpre1 = 2ms and tpre2 = 5ms. The post-synaptic neuron is also activated 2 times, at tpost1 = 7ms
and tpost2 = 10ms. Is w going to increase or decrease ?

Illustration of all-to-all interactions. With 2 pre-synaptic spikes, and 2 post-synaptic spikes, there are 4
interactions to consider: tpre1 to tpost1 , tpre1 to tpost2 , tpre2 to tpost1 , and tpre2 to tpost2 .
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Correction. w is going to increase (as all pre-synaptic spikes take place shortly before post-synaptic
spikes).

(b) Compute ∆w for the spike trains described in (a).

Correction. ∆w = W (tpost1 − tpre1 ) +W (tpost1 − tpre2 ) +W (tpost2 − tpre1 ) +W (tpost2 − tpre2 ) ≈ 2.48

(c) What will happen to w if we keep on stimulating the neuron by repeating the same spike pattern?
Is that realistic ?

Correction. The positive increments ∆w will keep on adding up and w will eventually diverge to
∞ (while an infinite synaptic weight would be biologically unrealistic).

(d) To solve this problem, a possible solution2 is to set A+(w) = wmax − w, where wmax is a fixed
parameter and w is the current value of the synaptic weight (w → w + ∆w).

i. Compute w after the spike trains from (a) (i.e. tpre1 = 2ms and tpre2 = 5ms; tpost1 = 7ms and
tpost2 = 10ms) has been delivered. Assume wmax = 1 and an initial weight w = 0.5.
Correction. w ≈ 0.9923

ii. Repeat for wmax = 100.
Correction. w ≈ 98.462

iii. How can we set the maximum weight that the synapse will reach?
Correction. w will not exceed wmax and will converge towards this value if the spike trains
pattern is repeated.

2Such a solution is called soft-bounds weight dependence. Interested readers can have a look at this article: http://www.

scholarpedia.org/article/Spike-timing_dependent_plasticity
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3. Random spikes. We now study how w varies when neurons are freely spiking at random times.

(a) Assume the following STDP function:

x > 0 =⇒ W (x) = A+ exp(−x/τ+)
x < 0 =⇒ W (x) = −A− exp(x/τ−)

(1)

where τ+ and τ− are positive parameters.

For tpost − tpre = ∆t, the corresponding modification of synaptic weight is ∆w = W (∆t).

Assuming τ+ = τ− = 20ms, A+ = 1, and A− = 1, show that ∀x ∈ R, W (−x) = −W (x) and plot
W .

Correction.

x > 0 =⇒ −x < 0 =⇒ W (−x) = − exp(−x/τ−) = −W (x)

x < 0 =⇒ −x > 0 =⇒ W (−x) = exp(x/τ+) = −W (x)

(b) Plot again the STDP function W , assuming this time A+ = 0.5, A− = 1, τ+ = 100ms and
τ− = 20ms.

Correction.

(c) 3 different stimulation protocols are applied to a synapse:

i. The presynaptic neuron fires exactly once every second, and a postsynaptic spike occurs
exactly 50ms after each presynaptic spike;
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ii. The presynaptic neuron fires exactly once every second, and the postsynaptic neuron fires
also once per second but with a delay δt randomly chosen between -10ms and 10ms;

iii. Presynaptic and postsynaptic neurons are freely spiking at random times.

How would you expect each of these protocols to modify the synaptic weight w, given each of the
STDP windows described in (a) and (b) ? Provide a graphical justification. Are your results for
the first protocol coherent with Hebb’s rule ?

Hint: The expected weight change ∆w is given by

∆w =

∫ ∞
−∞

W (s)C(s)ds

where s represents the values of tpost − tpre and C(s) is the cross-correlation of the pre and
post-synaptic spike trains. Intuitively, C(s) measures the distribution of tpost − tpre.
Correction. A sketch of C(s) is plotted on the figures below, along with the different STDP
windows W (s), with which it can be compared to assess how w will vary for each protocol.

(a) (b)

i. For the first protocol, the delay tpost − tpre is always equal to 50ms (we only consider pairs
of spikes, as 50ms � 1s). As the causal parts of both windows are positive, we expect w
to increase. This is coherent with Hebb’s rule: as the postsynaptic neuron spikes slightly
after (tpost − tpre > 0) the presynaptic neuron (i.e. they fire together), we expect the weight
to increase (i.e. they wire together). Note however that Hebb’s rule is only about synaptic
potentiation (i.e. ∆w > 0) and does not predict the acausal part of the learning rule (i.e.
depression, ∆w < 0).

ii. As the first STDP window is antisymmetric,
∫ 10

−10W (s)ds = 0, so we expect w to remain
unchanged.

For the second STDP window, since A− > A+, and since 10ms� τ+, τ− :
∫ 10

−10W (s)ds < 0,
so w will decrease.

iii. As the first STDP window is antisymmetric,
∫∞
−∞W (s)ds = 0, so we expect w to remain

unchanged.
For the second STDP window, since A+τ+ > A−τ−,

∫∞
−∞W (s)ds > 0, so w will increase.

(d) Herebelow are represented the STDP functions for 3 different kinds of synapses. For each of them,
how will w vary after a sufficiently high number of randomly distributed pre- and post-synaptic
spikes? Which of them are causal learning rules ?
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Correction. First plot:
∫∞
−∞W (s)ds ≈ 0 =⇒ ∆w ≈ 0

Second plot:
∫∞
−∞W (s)ds < 0 =⇒ ∆w < 0

Third plot:
∫∞
−∞W (s)ds > 0 =⇒ ∆w > 0

The first 2 rules are causal learning rules, since ∆w > 0 for tpost − tpre > 0.

4. Earliest predictor. We now assume that the pre-synaptic spike times are forced, while post-synaptic
firing is free. The post-synaptic is linked to N pre-synaptic neurons which all fire successively: the
first neuron at t1 = 1ms, the second at t2 = 2ms, etc. These inputs will build up and the post-synaptic
neuron will elicit a spike once its membrane current reaches a certain threshold. We assume this occurs
after the nth pre-synaptic spike. We note wi the synaptic weight between the ith pre-synaptic unit and
the post-synaptic unit.

(a) After the post-synaptic spike, how does wn vary? wn−1? wn−2?

Correction. As the post-synaptic spike happens immediately after the nth pre-synaptic spike, wn

is going to increase. So is wn−1, but slightly less than wn because the delay between tn and the
post-synaptic spike is shorter. The same applies to all the previous pre-synaptic spikes. See below
before STDP (upper figure) and after STDP (lower figure).
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(b) We repeat the same experiment a second time. How is the firing time of the post-synaptic unit
going to evolve? Remember that a higher synaptic weight w means that, upon arrival of a pre-
synaptic spike, the increase in post-synaptic current will also be higher.

Correction. As wn−1 is increased, the increment of post-synaptic current elicited by the (n− 1)th

spike is also increased, making it more likely to elicit a post-synaptic spike at the next trial. Trial
after trials, the post-synaptic spike is thus likely to be elicited earlier. See below before STDP
(upper figure) and after STDP (lower figure).

(c) We repeat the same experiment several times. Explain why the first pre-synaptic spike at t1 = 1ms
is eventually called the earliest predictor.

Correction. The first pre-synaptic spike at t1 = 1ms is the beginning of a pattern which, if
repeated, eventually leads to the post-synaptic spike being elicited earlier and earlier, up to t1.
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